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Investigation of the Longitudinal Multiconductor
Transmission Line Functions for Symmetric

Coupled-Microstrip Systems
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Abstract—In inhomogeneous multiconductor transmission line
(MTL) structures such as coupled microstrip, propagation is char-
acterized by multiple quasi-TEM modes with distinct propagation
constants. These “mode delays” cause the MTL functions to exhibit
longitudinal behavior that superficially appears problematic in the
context of passive lossless reciprocal systems. This paper presents
a thorough investigation of the longitudinal MTL functions. Using
MTL formulation and computer simulation, we explain the math-
ematics and physics of mode delays so that their effects are not
misinterpreted or attributed to error in the numerical analysis of
MTLs.

Index Terms—Coupled microstrip, immittance matrices, modal
dispersion, multiconductor transmission lines.

I. INTRODUCTION

I N INHOMOGENEOUS multiconductor transmission line
(MTL) systems, the distinct propagation constants result in

“mode delays” along the longitudinal direction. These systems
have been termed “multivelocity transmission lines” [1]. The
general well-known MTL conductor- and mode-domain formu-
lations that consider mode delays [2]–[7] are widely applicable
to many microwave problems with moderate to high coupling
(e.g., crosstalk prediction). However, to the authors’ knowledge,
no comprehensive study of these MTL quantities as functions
of longitudinal distance from a termination or discontinuity has
been undertaken. One present motivation for such analysis is
MTL matching network synthesis and transistor amplifier de-
sign [8].

This investigation will focus on the longitudinal behavior
of the MTL functions, including the signals and longitu-
dinal immittance matrix functions (LIMFs). Past work on
MTL immittance matrices has concerned their derivation for
fixed-length structures [9]–[11]. “Immittance” in this paper
implies the impedance, admittance, reflection coefficient, or
scattering matrixlooking into a terminated line of some spec-
ified length. In particular, we will address several seemingly
problematic effects of the mode delays on these longitudinal
MTL functions. For example, consider that lossless reciprocal

Manuscript received February 4, 2000; revised November 16, 2000.
J. G. Nickel was with the Center for Computational Electromagnetics, De-

partment of Electrical and Computer Engineering, University of Illinois at Ur-
bana-Champaign, Urbana, IL 61801 USA. He is now with Silicon Bandwidth,
Fremont, CA 94538 USA (e-mail: josh@hspark.ece.uiuc.edu).

J. E. Schutt-Ainé is with the Center for Computational Electromagnetics, De-
partment of Electrical and Computer Engineering, University of Illinois at Ur-
bana-Champaign, Urbana, IL 61801 USA (e-mail: jose@decwa.ece.uiuc.edu).

Publisher Item Identifier S 0018-9480(02)00739-1.

two-conductor transmission lines exhibit several intuitive
longitudinal properties: positive resistive and conductive com-
ponents of input impedances and admittances, and constant
reflection coefficient magnitude. However, these properties
do not generally apply to the matrix and vector elements of
the longitudinal MTL functions in steady-state conditions.
We will show how the longitudinal conductor admittance
matrices (in a passive system) do not necessarily have negative
off-diagonal real parts. Similar works have considered the signs
of characteristic matrix terms in asymmetric lines [12].

In this paper, our principal goal is to investigate, explain,
and validate these effects so they are not attributed to numer-
ical errors or nonphysical behavior. First, the MTL equations
are overviewed briefly. Next, the longitudinal properties of im-
mittance matrices and signals in symmetric lossless reciprocal
MTL systems are detailed (we limit this analysis to inhomoge-
neous symmetric systems and terminations) for arbitrary passive
linear termination. The effects of mode delays on all MTL func-
tions is detailed and relevant physical interpretations are drawn.
Numerical results from simulation illustrate these effects.

II. MTL E QUATIONS

Consider a symmetric coupled microstrip structure with an
arbitrary number of lines and conductors where
the ground plane is reference. While we focus in this paper on
the three-line case, results are generalized tolines
where possible. The-line MTL equations are equivalent to the
telegrapher’s equations in frequency-domain matrix form (si-
nusoidal steady-state conditions), and include the sym-
metric complex matrices of per-unit-length impedance and ad-
mittance and .

In -line quasi-TEM analysis, the propagating modes are
interpreted as physical system voltages and currents [2]. Decou-
pled telegrapher’s wave equations are solved via linear transfor-
mation for the conductor and mode variables

(1a)

(1b)

where and are transformation matrices, which si-
multaneously diagonalize both and to uncouple the MTL
equations. These transformations are redefined such that

[7]. The -column vectors and are the
mode voltage and current vectors along the line. Vectors
and are the conductor voltage and current vectors,
respectively, with being the longitudinal coordinate and
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Fig. 1. n-portN -node common-ground impedance network matrix physical
circuit realization for an(n� n) admittance matrix. Note:Z = [ZZZ ] .

being suppressed. For microstrip, there are generallydistinct
complex quasi-TEM mode propagation constants ar-
ranged in matrix .

Total mode voltage and current vectors are expressed as the
superposition of forward and backward waves [7]

(2a)

(2b)

where and are the modal wave coefficient vectors at the
load , and is a diagonal matrix whose entries are

, with denoting the complex propagation constant of the
th mode.

Diagonal-mode characteristic impedance and admittance ma-
trices are [13], [14]

(3a)

(3b)

while the conductor characteristic impedance and admittance
matrices are easily derived from [13], [14]

(4a)

(4b)

where the superscriptdenotes theconductor.

A. Terminated MTL Structure

Now suppose the coupled lines are terminated at one end
with a passive linear circuit network comprised of impedances
interconnecting each of the conductors in a common-ground
topology at the termination plane , as illustrated in Fig. 1.
This is an “ -terminal” topology, i.e., one of the nodes
is designated the common ground to which allports are
referenced. We conveniently express this termination in an

“impedance network matrix” . The diagonal term
represents the impedance connecting lineto ground,

and the off-diagonal term represents the impedance
connecting lines and . The dual-admittance network matrix
is the term-wise reciprocal of the impedance network matrix

. Note that these matrices have little math-
ematical meaning , they are merely compact
physical representations of networks; hence, the calligraphic
denotation.

Fig. 2. Coupled transmission-line section with load terminations and
immittance matrices atz = �a.

To analyze reflections on coupled lines, as in Fig. 2 (a specific
three-line system considered in the numerical results), the termi-
nation networks must be expressed as conductor open-
circuit impedance or short-circuit admittance matrices. We de-
note these and . Matrix is easily
synthesized from as follows:

(5a)

(5b)

The mode or conductor reflection coefficient at the load that
relates the mode or conductor voltage vectors to by

is derived from boundary conditions [7],
[8], [15], i.e., evaluating (1) and (2) at as follows:

(6a)

(6b)

Matrix is the mode admittance at the load

(7)

which is generally not diagonal.
Both reflection coefficient matrices are asymmetric in gen-

eral, even for symmetric lines and terminations, though this case
leads to several simplifications. Matrix contains zeros
(where brackets denote integer part) for terms whose indexes are
related by [15]. This is a consequence of the
termination symmetry, where incident even modes do not excite
reflected odd modes and vice-versa. Matrix possesses some
symmetry, namely,

(8)

This property follows from the assumption that thelines are
symmetric about the -plane. The asymmetry will be ad-
dressed in Section II-C.

The conductor current reflection coefficient matrix is the
transpose of the conductor voltage reflection coefficient ma-
trix, as easily shown using power relations or through direct
boundary condition derivation (we highlight that the result
may differ in sign from [7], simply by convention). However,
we consider only the conductor voltage reflection coefficient

for the remainder of this paper.
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B. Longitudinal MTL Functions

Longitudinal MTL functions depend on the quasi-TEM
propagation constants. The mode reflection coefficient matrix
looking toward the load (input) is

(9)

and the conductor reflection coefficient matrix is

(10)

At an arbitrary point , either matrix may be converted
to an admittance matrix which, if realized, would terminate the
lines at with an -terminal passive circuit, as in Fig. 1,
and equivalently model the immittance parameters of the cou-
pled-line section of length between the observation point and
the termination shown in Fig. 2.

The longitudinal impedance and admittance matrices are ex-
pressed [15]–[17] in modal and conductor form as

(11)

(12)

Network matrices corresponding to these are (5)

(13a)

all (13b)

C. Asymmetry and Reciprocity in MTL Functions

One may easily show that and are symmetric
in reciprocal systems. Despite the symmetry of the terms in (6a),
these factors do not necessarily commute, resulting in general
asymmetry of the reflection coefficient matrices. Physically, a
voltage on line incident upon a symmetric termination does
not “see” the same circuit as an incident voltage on line, hence,
the reflected signal on linedue to the incident signal on line
does not relate in a simple manner to the reflected signal on line

due to the incident signal on line.
However, this property has no bearing on reciprocity since

it does not relate electromagnetic reactions. Instead, we must
consider symmetry of the ( ) input conductor -param-
eter matrix (referenced to impedance ), which re-
lates the longitudinal power waves and by

. In general, and of the -port at
are not equivalent (the exception being for diagonal with

all diagonal terms equal). Matrix is derived from (6) and
the power wave normalizations

(14)

By reciprocity, an excitation of on port 1 is scaled by to
produce on port 2; an excitation of on port 2 is scaled by

to produce on port 1. Even for dense , is symmetric
and, therefore, reciprocal (see Appendix).

III. M ODE DELAY EFFECTS

Recall several obvious properties of lossless, terminated
transmission-line systems: power conservation, passivity (no
active sources), and passively realizable immittances. Mathe-
matically, their MTL functions are constrained by

(15a)

(15b)

(15c)

(15d)

However, in MTL systems, the immittance matrix behavior is
considerably more complicated. This section illustrates that
conditions (15) do not generally apply to the MTL function
(conductor-domain) analogues.

A. Signal Distortion

Longitudinal mode voltage is the superposition of the forward
and backward moded voltages; the mode voltage in (2a) may be
combined with (9) and expressed as

(16)

where modal decoupling results in constant modal voltage
standing-wave ratios (SWRs) along the line.

Mode voltage from (16) is given by

(17)

the SWR of the th mode is, therefore [15],

(18)

Clearly, (18) confirms the constant longitudinal magnitudes of
the modal reflection coefficient for lossless coupled lines. The
terms in (17) and (18) indicate the general depen-
dence of theth mode on all forward voltage coefficients at
the load and the th row of . This dependency is a phys-
ical result of mode conversion at a discontinuity. A significant
consequence of this dependence is that a purely real (resistive)
load termination network will not necessarily result in a modal
standing wave minimum or maximum at for a system
with mode delays.

It is evident from (17) that the longitudinal conductor volt-
ages and currents have nonuniform SWRs since each is a linear
combination (1) of all mode voltages or currents, respectively.
Therefore, a definition of conductor along lossless cou-
pled lines would only apply to successive maxima and minima.

MTL power may be quantified in either the mode or con-
ductor domain for microstrip [7, eqs. (53) and (55)]. Excita-
tions are represented in Thevenin form with a conductor voltage



186 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 1, JANUARY 2002

source vector and source impedance network matrix. The
total power traveling down a lossless line is a constant equal to
the power dissipated in the arbitrary passive load

(19a)

(19b)

where denotes “complex conjugate transpose.”
If (19b) is expressed as the sum of forward and backward

powers, we find that individual mode powers are constants in.
However, expanding (19a) into the sum ofterms as functions
of the mode voltages, eigenvectors, and propagators reveals
the conductor power fluctuations along the longitudinal direc-
tion—a result quite different from the single transmission-line
case (15b).

The total power is the sum of the powers incident on each
conductor or the sum of the modal powers. Despite the indi-
vidual conductor power variations along, the sum of con-
ductor powers is always .

B. Longitudinal Power Conservation

Now, we consider the features of the longitudinal reflection
coefficient matrix functions. In lossless coupled-line systems
without mode delay, the magnitude of the modal reflection co-
efficient elements remain constant along, and their
phase is linear within each period. This fact is consistent with
the power orthogonality of the quasi-TEM modes, and will be
clearly demonstrated via numerical simulations in Section IV.
With mode delays, however, (10) shows that each term of
is a linear combination of distinct -varying phasors, which
includeall propagation constants. Therefore, the magnitudes
of matrix terms clearly vary with .

For lossless lines with symmetric , and are
“checkered” with zeros; in this case, each term in con-
tains the sum of distinct constant
magnitude phasors containing separate even- and odd-mode ad-
ditive combinations of : , , , , ,

.
Does the longitudinal magnitude variation of vio-

late conservation of power flowing longitudinally? From phys-
ical intuition, lossless passive lines should neither dissipate, nor
generate power, therefore, longitudinal power should be con-
served. The propagation constants for lossless lines are purely
imaginary, thus

(20)

Since the remaining matrices in (10) are constant (with respect
to ), the relationship

confirms that

(21)

clearly maintains a constant determinant over. This result is
physically intuitive for lossless lines: no power should be gained
or lost in the longitudinal direction. Note that this result does
not prove power conservation for the overall system of lines and
terminations.

For practical applications, close proximity
between the matching networks and the load is often desired.
In this region of small coupling length, terms maintain
approximately constant magnitude. However, with increasing
length or coupling, a mixed-mode signal suffers distortion. It
remains as future work to determine conditions when signal
distortion due to mode delay dominates the dispersion encoun-
tered in a lossy dielectric system.

C. Passivity of the Admittance Matrix

The mode delays [and the behavior of (10)] also manifest
themselves in another interesting effect. Suppose we realize

as a passive -terminal circuit network, given by
. Given arbitrary passive terminations, the mode delays

may yield , whose off-diagonal elements contain pos-
itive real parts, i.e.,

(22)

which at first appears to violate passivity.
Condition (22) appears to be a consequence of the conductor

reflection coefficient magnitude variations; indeed, (22) can be
mathematically justified in a two-line case given large magni-
tude fluctuations in , which are clearly conceivable (with
simulation results presented in Section III-D). For , the
analysis grows considerably more complicated, and numerical
evaluations become necessary. However, in typical systems,
(22) may be satisfied at many longitudinal points, as will be
demonstrated in Section IV.

Despite this superficially problematic result, there is no phys-
ical reason to suspect that the input admittance matrix
represents a nonpassive network. As an-dimensional driving-
point short-circuit admittance matrix, a realization of

would model the length of lines and their prescribed ter-
mination at . This realized network is passive if the total
average signal power entering all the ports is greater than or
equal to zero. We may easily verify this passivity by general-
izing the derivation in [18] for power entering ports as fol-
lows:

(23)

Therefore, the passivity of may be easily verified by
checking if the immittance function is positive def-
inite. Simulation results for the three-line case will be shown in
Section III-D.

D. Realizability of the Admittance Matrix

While we can justify (22) algebraically via a simple two-line
case and check the passivity of via (23), we should also
consider passive -terminal circuit realization (e.g., Fig. 1) of

for all . In other words, what are the topological real-
izability conditions of matrix ?

In lossless lines, the distributed admittance matrix and prop-
agation constants are purely imaginary. The distributed capac-
itance matrix is a dominant matrix [19], which renders the
characteristic impedance and admittance matrices real and dom-
inant by virtue of (4). In network synthesis, an dominant
real admittance matrix may be realized as a resistive/conductive
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Fig. 3. Parallel conductance and susceptance circuits composing anN -node
n-terminal impedance network with a common ground.

network consisting of, in general, nodes [20]. Furthermore,
if all off-diagonal terms of this matrix are nonpositive, then a re-
sistive/conductive network of terminals may be synthesized
[20, Th. 8-4] with the real parts of the impedance/admittance
network matrices (13).

However, is generally a complex matrix. Therefore,
Theorem 8-4 must be extended accordingly. We split the-ter-
minal realization of into a conductive network in parallel
with a susceptive network (both-terminal, using the real and
imaginary parts, respectively) as shown in Fig. 3. Then, since
the susceptance network is realized with inductors or capacitors,
the sign constraints apply only to the real parts of the admittance
matrix or the conductive network. Thus, the theorem applies to
(complex) admittance matrices.

The equivalent network topology is an-node polygon inter-
connected with impedances as per . These impedances are
realized as parallelRL or RCcircuits where

(24a)

(24b)

(24c)

Now, if all off-diagonal terms of the dominant matrix
in microstrip have nonpositive real parts, is

passively realized as an-terminalRLCcircuit network (as in
Fig. 1). This realization assumes the topology of a complete
polygon with vertices and admittances,

of which are independent (see
Fig. 1), and whose components are given by (24).

However, a dominant admittance matrix whose
off-diagonal terms have positive real components (22) is realiz-
able as an -port RLC network that has only nodes, but no
common ground for all ports (the general synthesis procedure
may be found in [20]). In this case, it follows that is
unrealizable at as an -terminalRLCcircuit network
since coupled microstrip network topology does have a common
ground. An alternative realization consisting of nodes and
ports exists, though it lacks a common ground. Of course, this

-node realization also applies when has all off-diag-
onal real components nonpositive since its-terminal network
realization may also take the form of -node, -port realiza-
tion with no common ground, where both realizations are inter-
changeable via star-mesh conversions.

However, how is such a topology without a common ground
reconciled with the physics of microstrip? Furthermore, how
can the section of lines lengthand their termination be pas-
sively realized? We must consider another circuit element: the
ideal transformer. If permitted in the equivalentRLCcircuit real-
ization of , one node may be designated as the common
ground and the remaining ports may be isolated by these trans-
formers and then connected to the same common ground. There-
fore, at points where (22) is encountered, the application of ideal
transformers to ports of the -node realization without
a common ground will permit -port, -node common-ground
realization. This possibility arises since any synthesis procedure
for realizing an -port network with ideal transformers simulta-
neously realizes an -terminal network [20].

Hence, we have shown that (22) for certain longitudinal
points does not violate passivity of the terminated
system, thus numerical stability at is preserved, and
will be illustrated in Section IV. However, a passive unbalanced

-node -port RLC termination network with one common
ground (the microstrip ground plane) is not realizable at

without transformers.
Expounding the physical meaning of the ideal transformers,

they dissipate no real power and store no energy. Moreover, if
the turn ratios are 1 : 1, their only function is to isolate a port and
allow for common grounding and the realization of an-ter-
minal topology. Of course, they only become necessary when
(22) is encountered. Arguably the most significant effect of the
mode delays is the longitudinal power fluctuations along the
conductors, which depend on the conductor voltage and current
magnitude variations, and these effectively require compensa-
tion in the immittance parameters. Condition (22) provides this
compensation, though not in a readily discernible manner.

IV. NUMERICAL RESULTS

Numerical results presented in this section have previously
appeared in the literature [8], though more longitudinal details
are presented. A three-coupled line microstrip structure with cir-
cuit parameters , , and

nH (25)

pF (26)

was synthesized on board for a three-coupled-line matching net-
work. Moderate coupling ensured discernible mode delays for
an operating frequency of 2.0 GHz. A “low impedance” termi-
nation at the load given by

(27)
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(a)

(b)

Fig. 4. Longitudinal variations of the input modal reflection coefficient matrix
terms. Note:a = [� (z)] , b = [� (z)] , c = [� (z)] , andd =
[� (z)] .

and an excitation of 1 V with a 50-source impedance on each
line resulted in multimode reflections simulated via an MTL
digital computer program.

As predicted in Section III-B, the elements of main-
tain constant longitudinal magnitudes; all five nonzero elements
are shown in Fig. 4. Three distinct phase constants (and the
arithmetic mean of modes 1 and 3) are readily apparent in the
phase plot. Also evident is the 180phase at due to the
low-impedance termination.

Clearly, for lossless systems, terms in exhibit non-
linear magnitude dependence with. Matrix terms are
shown in Fig. 5. Within practical working distance from the ter-
minations cm , the magnitude of the all voltage re-
flection terms increase with the coupling length, except for the
self reflection terms , which steadily decrease. For
moderate to low coupling or short distances from the termina-
tions, the impact from these effects is obviously minimum.

To better exemplify the properties of longitudinal mode
and conductor voltage magnitudes in lossless lines, a large
length cm was simulated. The standing-wave pat-
terns are shown in Fig. 6. As predicted, each mode voltage
standing-wave pattern is characterized by a minima offset
from the load and a distinct constant SWR. At large distances,
a phase offset between the standing-wave patterns becomes
apparent. The resulting shift in the conductor voltage signals
is shown in Fig. 6. Clearly, as predicted analytically, the
mode SWRs remain constant, and have periods of .
Conductor voltage standing-wave patterns neither have a fixed
maximum-minimum ratio, nor simply quantifiable periods.

Power behaves similarly; constant longitudinal mode powers
are observed in Fig. 7, while the conductor power fluctuations
(the slowly varying envelope) due to the mode delays are ev-
ident. The negative power for mode 3 suggests that power is
generated at the load and questions passivity. However, this is
simply mode conversion: a fraction of power from mode 1 is
converted to mode 3, whose reflected magnitude exceeds its
incident magnitude. Note that the sum of the three conductor

(a)

(b)

Fig. 5. Longitudinal variations of the input conductor reflection coefficient
matrix � (z) terms. Note: a = [� (z)] , b = [� (z)] ,
c = [� (z)] , d = [� (z)] , ande = [� (z)] .

(a)

(b)

Fig. 6. Simulated longitudinal variation (from load toz = �50 cm) of modal
and conductor voltage magnitudes for “short” termination at 2.0 GHz, showing
the magnitude properties for lossless lines.

powers is constant for all and equal to the sum of the mode
powers.

Finally, the longitudinal input admittance matrix function is
plotted to illustrate an “active” effect (22). Matrix is nor-
malized via elements to illustrate specific locations where (22)
holds as follows:

(28)
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(a)

(b)

Fig. 7. Longitudinal distribution of the conductor and modal powers (from
load toz = �50 cm).

(a)

(b)

Fig. 8. Simulated longitudinal variation (from load toz = �100 cm) of
<fYYY (z)g for “short” termination at 2.0 GHz, showing the negative real
components of the element-normalized admittance matrix.

where connects lines 1 and 3 to ground, connects
line 2 to ground, is the mutual admittance between nearest
neighbors, and is the admittance between nonadjacent
neighbors (lines 1 and 3).

Fig. 8 shows locations for which each of these admittances
have negative real parts, and are unrealizable in an-terminal
topology. Clearly, the periodicity of the effect is evident. A de-
tailed evaluation of how the termination choice affects this lon-
gitudinal occurrence is a highly nonlinear problem beyond the
scope of this paper.

For great lengths, we find locations where is not dom-
inant showna posteriori. However, in these instances, none of
the diagonal terms of have negative real parts. As ex-
pected, the admittance matrix was positive real (therefore, pas-
sive) for all simulated points, demonstrating numerical stability

and correct longitudinal MTL formulations. In regards to the re-
alizability of , the condition of dominance is sufficient,
but not necessary; the only constraint on passive realization
(with RLCelements, ideal transformers, and mutual inductance)
is that is positive real [20, Th. 7-2 ]. Indeed, the function

could be realized everywhere with a common-ground
topology including transformers.

V. CONCLUSIONS

The objective of this paper has been to investigate the
behavior of the longitudinal MTL functions and, in particular,
detail the effects of quasi-TEM mode delays on these func-
tions. This study has showed how the mode delays in lossless
symmetric lines were responsible for longitudinal conductor
power variations, varying conductor voltage SWRs, multimode
signal distortion, conductor reflection coefficient magnitude
variations, and unrealizable-terminal admittance matrices.

Passivity, reciprocity, and lossless properties have been
demonstrated numerically for the cases encountered, and
passive circuit realizations have always been possible, though
constrained to certain topologies; the-terminal topology
physically inherent to microstrip could have been realized in
the general case only if ideal transformers had been included.

For the lossy case, such analysis becomes considerably more
complicated, though the present analysis should be useful for
many circuits of practical interest modeled using lossless as-
sumptions. Moreover, as designers simulate smaller, faster, and
higher frequency transmission devices, particularly coupled
transmission lines, these effects will become more pronounced.
Clearly, lossy high-coupling MTL simulation must account
for these effects to ensure that large longitudinal reflection
coefficient magnitude fluctuations, conductor power variations,
and signal distortion are not attributed solely to power loss or
other mechanisms.

Detailed analysis regarding the effects of mode delays on loss
calculation, as well as experimental validation on low-loss struc-
tures, remains as a topic of future work.

APPENDIX

-parameter matrix symmetry in reciprocal systems is shown
as follows (omitting the matrix multiplication operator).

The generalized -parameter matrix given by (14) is repeated
here for convenience as follows:

(A1)

This matrix describes a reciprocal system; its symmetry is
proven as follows. Taking the transpose of (A1) results in

(A2)

where each factor is symmetric by reciprocity. Now, if is
nonsingular

(A3)

To simplify the algebra, we let

(A4)
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Note that is similar to a reflection coefficient. Now,

(A5)

The derivation for is obviously applicable to (6).
Using (A5) with (A4) and (A3), we arrive at

(A-6)

Finally, we have , which agrees with [21], in which
Chin defines according to (A2).
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