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Abstract—in inhomogeneous multiconductor transmission line two-conductor transmission lines exhibit several intuitive
(MTL) structures such as coupled microstrip, propagationis char-  |ongitudinal properties: positive resistive and conductive com-
acterized by multiple quasi-TEM modes with distinct propagation ponents of input impedances and admittances, and constant

constants. These “mode delays” cause the MTL functions to exhibit flecti fficient itude. H h "
longitudinal behavior that superficially appears problematicinthe ~ '€N€CUON COEINCiENt magnitude. However, these properties

context of passive lossless reciprocal systems. This paper present§l0 notgenerally apply to the matrix and vector elements of

a thorough investigation of the longitudinal MTL functions. Using  the longitudinal MTL functions in steady-state conditions.
MTL formulation and computer simulation, we explain the math- ~ \We will show how the longitudinal conductor admittance
ematics and physics of mode delays so that their effects are not,ayices (in a passive system) do not necessarily have negative
misinterpreted or attributed to error in the numerical analysis of . o . .
MTLs. off-diagonal real parts. Similar works have considered the signs
of characteristic matrix terms in asymmetric lines [12].

In this paper, our principal goal is to investigate, explain,
and validate these effects so they are not attributed to numer-
ical errors or nonphysical behavior. First, the MTL equations
|. INTRODUCTION are overviewed briefly. Next, the longitudinal properties of im-

N INHOMOGENEOUS multiconductor transmission lineMiftance matrices and signals in symmetric lossless reciprocal

(MTL) systems, the distinct propagation constants result MTL systems are detailed (we Iimit_this_ analysis to_ inhomoge_-
“mode delays’ along the longitudinal direction. These syste ous sym.met_nc systems and terminations) for arbitrary passive
have been termed “multivelocity transmission lines” [1]. Th near termination. The effects of mode delays on all MTL func-

general well-known MTL conductor- and mode-domain formﬁms is'detailed and rele\(ant physif:al interpretations are drawn.

lations that consider mode delays [2]-[7] are widely applicab umerical results from simulation illustrate these effects.

to many microwave problems with moderate to high coupling

(e.g., crosstalk prediction). However, to the authors’ knowledge,

no comprehensive study of these MTL quantities as functionsConsider a symmetric coupled microstrip structure with an

of longitudinal distance from a termination or discontinuity haarbitrary number of lines and N = n + 1 conductors where

been undertaken. One present motivation for such analysighie ground plane is reference. While we focus in this paper on

MTL matching network synthesis and transistor amplifier dehe three-lingln = 3) case, results are generalizedrtdines

sign [8]. where possible. The-line MTL equations are equivalent to the

This investigation will focus on the longitudinal behaviotelegrapher’s equations in frequency-domain matrix form (si-

of the MTL functions, including the signals and longitunusoidal steady-state conditions), and include(thg ») sym-

dinal immittance matrix functions (LIMFs). Past work ormetric complex matrices of per-unit-length impedance and ad-

MTL immittance matrices has concerned their derivation fonittanceZ andY.

fixed-length structures [9]-[11]. “Immittance” in this paper In n-line quasi-TEM analysis, the propagating modes are

implies the impedance, admittance, reflection coefficient, arterpreted as physical system voltages and currents [2]. Decou-

scattering matrixooking into a terminated line of some specpled telegrapher’s wave equations are solved via linear transfor-

ified length In particular, we will address several seeminglynation for the conductor and mode variables

problematic effects of the mode delays on these longitudinal

MTL functions. For example, consider that lossless reciprocal v (2) =B - ve(2) (1a)
in(2) =H - i0(2) (1b)

Index Terms—Coupled microstrip, immittance matrices, modal
dispersion, multiconductor transmission lines.
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Fig. 2. Coupled transmission-line section with load terminations and

Fig. 1. n-port N-node common-ground impedance network matrix physic mittance matrices at = —a.

circuit realization for affn x n) admittance matrix. NoteZ;; = [Z.];;.

To analyze reflections on coupled lines, as in Fig. 2 (a specific
three-line system considered in the numerical results), the termi-
ranged in matrixa,,,. nation networks must be expressed:as< n) conductor open-

Total mode voltage and current vectors are expressed as(fhcu't impedance or short-circuit admittance matrices. We de-

r
c c cl __ c1—1 H c H
superposition of forward and backward waves [7] QSE?htggiﬁLfr%?g)Y% s( [foﬁ(])v;s[ £]™"). Matrix Y is easily
L .

being suppressed. For microstrip, there are genenatlistinct
complex quasi-TEM mode propagation constapts »  , ar-

vn(2) =Q(=2) -} + Q) vy, (22) " 1
in(2) =Q(—2) -if — Q(2) -7, (2b) Yili=> (Zdw)™, i=12..n (59
k=1
wherev andi, are the modal wave coefficient vectors at the Y7l = (-[Z2L)i;) i 7. (5b)

load (z = 0), andQ(z) is a diagonal matrix whose entries are
e, with ~; denoting the complex propagation constant of the The mode or conductor reflection coefficient at the load that

ith mode. relates the mode or conductor voltage vectys. to v,,, . by
Diagonal-mode characteristicimpedance and admittance meg; . = L'} - v\, . is derived from boundary conditions [7],
trices are [13], [14] [8], [15], i.e., evaluating (1) and (2) at= 0 as follows:
m,c m,C m,C m,C TnC*];
aw=AE-Z-H'=E-Y'-H' A, (3 Ly =[27° - 2571127 + 2] (6)
m _ — — — m,c m,c1—1 m,c m,c
M=A'H Y E'=H-Z ' E*' A, (3b) =Y 4+Yr) YR -YTl.  (6b)

while the conductor characteristic impedance and admittard@trix Y;' is the mode admittance at the load
matrices are easily derived from [13], [14]

I =H Yy E" )
Ww=E' AL E-Z=Y ' H'A,,-H (43)

ch
Yo, =H ' A;) HY=Z"'E"' A, -E (4b)

ch

which is generally not diagonal.

Both reflection coefficient matrices are asymmetric in gen-
eral, even for symmetric lines and terminations, though this case
leads to several simplifications. MatX* containgn /2] zeros
A Terminated MTL Structure (where brapkeﬁs denote integer part_) fprterms whose indexes are

. . related by(i — ) mod 2 = 1 [15]. This is a consequence of the

Now suppose the coupled lines are terminated at one &@@nination symmetry, where incident even modes do not excite

interconnecting each of th¥ conductors in a common-groundsymmetry, namely,

topology at the termination plane= 0, as illustrated in Fig. 1.
This is an “N-terminal” topology, i.e., one of théV nodes
is designated the common ground to which allports are
referenced. We conveniently express this termination in diis property follows from the assumption that théines are

(n x n) “impedance network matrix[’Z;]. The diagonal term symmetric about the = 0-plane. The asymmetry will be ad-
[Z.]):; represents the impedance connecting liie ground, dressed in Section II-C.

and the off-diagonal terniZ;];; represents the impedance The conductor current reflection coefficient matrix is the
connecting lineg andj. The dual-admittance network matrixtranspose of the conductor voltage reflection coefficient ma-
is the term-wise reciprocal of the impedance network matrtkix, as easily shown using power relations or through direct
[Vili; = ([Z1):;)”". Note that these matrices have little mathboundary condition derivation (we highlight that the result
ematical meaninQ[yL] # [ZL]—l), they are merely compact may differ in sign from [7], simply by convention). However,
physical representations of networks; hence, the calligraphie consider only the conductor voltage reflection coefficient
denotation. I'¢, () for the remainder of this paper.

where the superscriptdenotes theonductor

[ CL]U = cL]n,—i+1,n—j+1 : 8
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B. Longitudinal MTL Functions [ll. M ODE DELAY EFFECTS

Longitudinal MTL functions depend on the quasi-TEM Recall several obvious properties of lossless, terminated
propagation constants. The mode reflection coefficient mattidansmission-line systems: power conservation, passivity (no

looking toward the load (input) is active sources), and passively realizable immittances. Mathe-
m m matically, their MTL functions are constrained by
Ii(z) =Q(2) - I'T - Q(z)
A .

and the conductor reflection coefficient matrix is Vi(z) =V <Z - 'L§> ; z<0; 1=1,23,...

I\(z) = E~' - Tj(2) - E. (10) (153)

. . . . P(z) =P (15b)

At an arbitrary pointx = —a, either matrix may be converted o
to an admittance matrix which, if realized, would terminate the 55T =0 (15¢)
lines atz = —a with anV-terminal passive circuit, as in Fig. 1, me{Z:Y} >0. (15d)

and equivalently model the immittance parameters of the cou-
pled-line section of length between the observation point ancdHowever, in MTL systems, the immittance matrix behavior is

the termination shown in Fig. 2. considerably more complicated. This section illustrates that
The longitudinal impedance and admittance matrices are eonditions (15) do not generally apply to the MTL function
pressed [15]-[17] in modal and conductor form as (conductor-domain) analogues.

Z0(2) =L, — ()] [l + T°(2)] Z0° (11) A Signal Distortion
Y(2) =Y 1, + T(2)] 7 - [1, —T°(2)]. (12)  Longitudinal mode voltage is the superposition of the forward
and backward moded voltages; the mode voltage in (2a) may be

Network matrices corresponding to these are (5) combined with (9) and expressed as

" -1
2l = (Z [an<z>1ik) Cicizen () =00 v Q) TE Q) Q) o

k=1 =[1, +TR(2)] - Q(=2) - vy, (16)

—1
[Zin(2)]i; = (— [an(z)]ij) s GFE (13a) where modal decoupling results in constant modal voltage
w()i; = (Bm()]i)) " all 4, . 13p) Standing-wave ratios (SWRs) along the line.
Win(#)ly = (Zin(=)l) hJ (13b) Mode voltagei from (16) is given by
iprocity i i 22) 70,
C. Asymmetry and Reciprocity in MTL Functions v (2] = [Q(=2)],; ”r—;]i <1 + Q( 3+]L m ) (17)

One may easily show th&¢ () andY?, (z) are symmetric

in reciprocal systems. Despite the symmetry of the terms in (6ghe SWR of theith mode is, therefore [15],
these factors do not necessarily commute, resulting in general

asymmetry of the reflection coefficient matrices. Physically, a 14 ‘I‘TL"U:Z]i

voltage on line: incident upon a symmetric termination does SWR,]i = vk (18)
not “see” the same circuit as an incident voltage onjirfeence, e 7ot |

the reflected signal on lingdue to the incident signal on lirne - ‘ vh]:

does not relate in a simple manner to the reflected signal on line ) o ]
j due to the incident signal on line Clearly, (18) confirms the constant longitudinal magnitudes of

However, this property has no bearing on reciprocity sindBe modal reflection coefficient for lossless coupled lines. The
it does not relate electromagnetic reactions. Instead, we miMsL'7 vih i /vi]i in (17) and (18) indicate the general depen-
consider symmetry of then(x n) input conductorS-param- dence of theth mode on allx forward voltage coefficients at
eter matrixS¢, (z) (referenced to impedancg?,,), which re- the loadv, and theith row of ' This dependency is a phys-
lates the longitudinal power waves(z) andb®(z) by b, (z) = ical result of mode conversion at a discontinuity. A significant
S¢ (2) - a (2). In general TS (z) and S, (z) of thenl-nport at consequence of this dependence is that a purely real (resistive)
p };‘re not g‘quiva|em (the exg;ption beierg for diagaig] with load termination network will not necessarily result in a modal

all diagonal terms equal). Matri&, (z) is derived from (6) and Standing wave minimum or maximum at= 0 for a system

the power wave normalizations with mode delays. o
It is evident from (17) that the longitudinal conductor volt-
S¢=( ih)l/2 Z4, + Z‘;j]_]L (25 - Z4]) - ( 211)_1/2 . ages and currents have nonuniform SWRs since each is a linear

(14) combination (1) of all mode voltages or currents, respectively.

Therefore, a definition of conduct8&WR,. along lossless cou-
By reciprocity, an excitation af; on port 1 is scaled by, to pled lines would only apply to successive maxima and minima.
producebs on port 2; an excitation of; on port 2 is scaled by MTL power may be quantified in either the mode or con-
S12 to producé; on port 1. Even for densg;,, S is symmetric ductor domain for microstrip [7, eqgs. (53) and (55)]. Excita-

cl

and, therefore, reciprocal (see Appendix). tions are represented in Thevenin form with a conductor voltage
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source vectovs and source impedance network matgi. The For practical applications, close proximityy < \/2)
total power traveling down a lossless line is a constant equalietween the matching networks and the load is often desired.

the power dissipated in the arbitrary passive load In this region of small coupling lengt¢ (») terms maintain
1 approximately constant magnitude. However, with increasing
Pr = P(z) 25%{0*(@ -i(z)} (19a) length or coupling, a mixed-mode signal suffers distortion. It
1 . ) remains as future work to determine conditions when signal
Igme{vm(z) : lm(z)} (19b)  distortion due to mode delay dominates the dispersion encoun-

* “ . Y tered in a lossy dielectric system.
where(*) denotes “complex conjugate transpose.

If (19b) is expressed as the sum of forward and backwagd Passivity of the Admittance Matrix

powers, we find that individual mode powers are constants in . )
However, expanding (19a) into the sumvoferms as functions  1he mode delays [and the behavior of (10)] also manifest
of the mode voltages, eigenvectors, and propagators re\,ég;&mselves in another interesting effect. Suppose we realize
the conductor power fluctuations along the longitudinal dired/in(?) @S @ passiveV-terminal circuit network, given by
. Given arbitrary passive terminations, the mode delays

tion—a result quite different from the single transmission-lin@n (%)

case (15b). may yieldY?, (=), whose off-diagonal elements contain pos-
The total power is the sum of the powers incident on eadiive real parts, i.e.,
conductor or the sum of the modal powers. Despite the indi- R{Zw(2)]ij, Vin(2)]is } <0,  i#j (22)
vidual conductor power variations along the sum ofn con- . . _ .
ductor powers is alway®.. which at first appears to violate passivity.
Condition (22) appears to be a consequence of the conductor
B. Longitudinal Power Conservation reflection coefficient magnitude variations; indeed, (22) can be

. I ._mathematically justified in a two-line case given large magni-
Now, we consider the features of the longitudinal reflectio, : e . . .
L . ; ; ude fluctuations i, (=), which are clearly conceivable (with
coefficient matrix functions. In lossless coupled-line systems . n ; :
X . d simulation results presented in Section 11I-D). ko> 3, the
without mode delay, the magnitude of the modal reflection cQ-

- ; . . analysis grows considerably more complicated, and numerical
efficient element$I'¢ (z)].. remain constant along and their . ; .
- oAy . i . ) .evaluations become necessary. However, in typical systems,
phase is linear within each period. This fact is consistent wi

the power orthogonality of the quasi-TEM modes, and will b 2) may be s_atisfied_ at many longitudinal points, as will be
clearly demonstrated via humerical simulations in Section | .emons_trate_d n Sec_t|(_)n V. . .

With mode delays, however, (10) shows that each terfifgff:) . Despite this superficially probl_ematlc res_ult, thereis no phys-
is a linear combination af? distinctz-varying phasors, which ical reason to suspect that the input admittance maf{jxz)

. . . represents a nonpassive network. As:atimensional driving-
includeall propagation constantg. Therefore, the magnitudes " o . . -

) ) ) point short-circuit admittance matrix, a realizationof, (z =
of matrix terms[I'{, ()], clearly vary withz.

For lossless lines with symmetrk$, I'f* andIT'?(z) are _F‘) WOUId model the_ Iengtb of lines and _the|r pr_esc_rlbed ter-
B e o . . ’ . mination at> = 0. This realized network is passive if the total
checkered” with zeros; in this case, each ternTify(z) con-

tains the sum of /4 [n2 +2n + (n mod 2)] distinct constant 2Verage signal power entering all the ports is greater than or

magnitude phasors containing separate even- and odd—modeeél]t%fIal o zero. We may easily verify this passivity by general-

. e izing the derivation in [18] for power enteri orts as fol-
ditive combinations of;;: 2v1, v1+v3, Y1 +¥5, - - - 272, Y2+ V4, Iowg' [18] P ngp

Does the longitudinal magnitude variation[d¥; (=)],; vio- P=wv.(2)" - (Re{YL(2)}) -va(2). (23)
late conservation of power flowing longitudinally? From phys- ‘ " ‘
ical intuition, lossless passive lines should neither dissipate, miierefore, the passivity af{,(z) may be easily verified by
generate power, therefore, longitudinal power should be caghecking if the immittance functioRt {Y,(z)} is positive def-
served. The propagation constants for lossless lines are puiglie. Simulation results for the three-line case will be shown in

imaginary, thus Section III-D.
|det[Q(2)]] = 1. (20) D. Realizability of the Admittance Matrix
Since the remaining matrices in (10) are constant (with respect/Vhile we can justify (22) algebraically via a simple two-line
t0 2), the relationshiglet(AB, . .., C) = det(A)-det(B)-- - -- case and check the passivity®f, (z) via (23), we should also
det(C) confirms that consider passivé&/-terminal circuit realization (e.g., Fig. 1) of
Y? (=) for all z. In other words, what are the topological real-
3( |det [T%,(2)]]) = 0 (21) izability conditions of matrixy’;,(z)?
az mn

In lossless lines, the distributed admittance matrix and prop-
clearly maintains a constant determinant oyefhis result is agation constants are purely imaginary. The distributed capac-
physically intuitive for lossless lines: no power should be gainéthince matrixC is a dominant matrix [19], which renders the
or lost in the longitudinal direction. Note that this result doesharacteristicimpedance and admittance matrices real and dom-
not prove power conservation for the overall system of lines aiant by virtue of (4). In network synthesis, &nx n) dominant
terminations. real admittance matrix may be realized as a resistive/conductive
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2n-node realization also applies wh¥fj, (—a) has all off-diag-
onal real components nonpositive since/Mtg¢erminal network
realization may also take the form &f.-node,n-port realiza-
tion with no common ground, where both realizations are inter-
changeable via star-mesh conversions.

However, how is such a topology without a common ground
reconciled with the physics of microstrip? Furthermore, how
can the section of lines lengthand their termination be pas-
sively realized? We must consider another circuit element: the
ideal transformer. If permitted in the equival&itCcircuit real-
ization ofY; (—a), one node may be designated as the common
ground and the remaining ports may be isolated by these trans-
formers and then connected to the same common ground. There-
fore, at points where (22) is encountered, the application of ideal
Fig. 3. Parallel conductance and susceptance circuits composigraode transformers ta, — 1 _ports O.f the2n-node realization without
n-terminal impedance network with a common ground. a common ground will permit-port, N-node common-ground

realization. This possibility arises since any synthesis procedure
network consisting of, in generalp nodes [20]. Furthermore, fOr realizing am-port network with ideal transformers simulta-
if all off-diagonal terms of this matrix are nonpositive, then a réleously realizes av-terminal network [20]. o
sistive/conductive network aF terminals may be synthesized Hence, we have shown that (22) for certain longitudinal

[20, Th. 8-4] with the real parts of the impedance/admittand@®ints = = —a does not violate passivity of the terminated
network matrices (13). system, thus numerical stability at= —a is preserved, and

However, Y (z) is generally a complex matrix Therefore Will be illustrated in Section IV. However, a passive unbalanced
1 m\~ . 1

Theorem 8-4 must be extended accordingly. We split¥hter- /V-node n-port RLC termination network with one common
minal realization ok’¢, (=) into a conductive network in parallel ground  (the microstrip ground plane) is not realizable at
with a susceptive network (bofN-terminal, using the real and # = —a Without transformers. _

imaginary parts, respectively) as shown in Fig. 3. Then, sinceExpounding the physical meaning of the ideal transformers,
the susceptance network is realized with inductors or capacitdf€Y dissipate no real power and store no energy. Moreover, if
the sign constraints apply only to the real parts of the admittan&e turn ratios are 1: 1, their only function is to isolate a port and

matrix or the conductive network. Thus, the theorem applies 8§oW for common grounding and the realization of Anter-
(complex) admittance matrices. minal topology. Of course, they only become necessary when

The equivalent network topology is @node polygon inter- (22)is encoun_tered. ArgL_lany the most significa_nt effect of the
connected with impedances as (&y,. These impedances areMode delays is the longitudinal power fluctuations along the

realized as paralléRL or RC circuits where conductors, which depend on the conductor voltage and current

=) magnitude variations, and these effectively require compensa-

Rij(z) =(Re{[Yin(2)]i;}) (24a)  tion in the immittance parameters. Condition (22) provides this
. : ) o ;

Se{[Vin ()]s compensation, though not in a readily discernible manner.
Lyt = BAPmERA oy ) <o
(24Db) IV. NUMERICAL RESULTS
C;i(2) IW(%e{[yin(Z)]ij})il, Se{[Vinlis} > 0. Numerical results presented in this section have previously

(24c) appeared in the literature [8], though more longitudinal details

] ] ] _ are presented. A three-coupled line microstrip structure with cir-
Now, if all off-diagonal terms of the dominant matriXcyit parameter®? = 0, G = 0, and

Y? (z) in microstrip have nonpositive real part¥;, (z) is

passively realized as aW-terminalRLC circuit network (as in 310.887 67.4845 22.2536

Fig. 1). This realization assumes the topology of a complete L = | 67.4845 305.963 67.4845 | nH (25)

polygon with N vertices andN(N — 1)/2 admittances, [ 222536 67.4845 310.887

1/4 [n? + 2n + (n mod 2)] of which are independent (see [ 125.143 —15.4225 —0.81741

Fig. 1), and whose components are given by (24). C=|-154225 128346 —154225| pF (26)
However, a dominant admittance mathiX, (» = —a) whose —0.81741 —15.4225 125.143

off-diagonal terms have positive real components (22) is realiz- _ . .
able as am-port RLC network that has onlyV nodes, but no was synthesized on board for a three-coupled-line matching net-

common ground for all ports (the general synthesis procedLWgrk' Moderate coupling ensured d|sciern|l_3|e mode dﬁzlays for
. ! . . an operating frequency of 2.0 GHz. A “low impedance” termi-
may be found in [20]). In this case, it follows th¥t (—a) is ) :
u nation at the load given by

unrealizable at = —a as an/NV-terminalRLC circuit network
since coupled microstrip network topology does have a common 20 287.152 2883.71
ground. An alternative realization consisting2ef nodes and: Zp = |287.152 69.1719 287.152 | Q (27)

ports exists, though it lacks a common ground. Of course, this 2883.71 287.152 20
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and an excitation of 1 V with a 50-source impedance on each
line resulted in multimode reflections simulated via an MTL
digital computer program.

As predicted in Section I1I-B, the elementsBf'(z) main- osf
tain constant longitudinal magnitudes; all five nonzero elements | .., “
are shown in Fig. 4. Three distinct phase constants (and th o
arithmetic mean of modes 1 and 3) are readily apparent in the
phase plot. Also evident is the 18phase at = 0 due to the
low-impedance termination. 1

Clearly, for lossless systems, termsIivj, () exhibit non- o8
linear magnitude dependence withMatrix I'¢, (») terms are
shown in Fig. 5. Within practical working distance from the ter- g
minations(z > —10 cm), the magnitude of the all voltage re- ¢
flection terms increase with the coupling length, except for the o=
self reflection termsI'§ (=)],; 15, which steadily decrease. For 0 R S N
moderate to low coupling or short distances from the termina- % " Dsancefomlcad om) ¢
tions, the impact from these effects is obviously minimum. )

To better exemplify the properties of longitudinal mode _ o o
6. Simulated longitudinal variation (from load4c= —50 cm) of modal

and CondUCtOrr VOItage m"?‘gthdeS In lOSSIeSS lines, a Ia@ conductor voltage magnitudes for “short” termination at 2.0 GHz, showing
length D = 50 cm was simulated. .The standing-wave pakhe magnitude properties for lossless lines.

terns are shown in Fig. 6. As predicted, each mode voltage

standing-wave pattern is characterized by a minima offset .
from the load and a distinct constant SWR. At large distancdS\Wers 1S constant for all and equal to the sum of the mode

a phase offset between the standing-wave patterns beco&%'\_gmr v, the lonaitudinal input admittance matrix function i
apparent. The resulting shift in the conductor voltage signal aly, the longitudinal input a ance ma unction 1s

is shown in Fig. 6. Clearly, as predicted analytically, thQFOt.ted to ?Ilustrate an “ac_tive” effect(22.): Matr]%_fn(z ) is nor-
mode SWRs remain constan,t and have periods of /3‘/2’ malized via elements to illustrate specific locations where (22)

v

R
20 25 30 35 40 45 50
Distance from load (cm)

w
=3
I3

Conductor voltage standing-wave patterns neither have a fi

)Jg%lds as follows:

maximum-minimum ratio, nor simply quantifiable periods. Yar(z) = Va2
Power behaves similarly; constant longitudinal mode powers AR VA
are observed in Fig. 7, while the conductor power fluctuations Vo (2)]yy
(the slowly varying envelope) due to the mode delays are ev- Yoerr—2(2) :W
ident. The negative power for mode 3 suggests that power is . chizz
generated at the load and questions passivity. However, this is Yot (7) :M
simply mode conversion: a fraction of power from mode 1 is RN
converted to mode 3, whose reflected magnitude exceeds its Yaon(2) _Pia@ls 28)

incident magnitude. Note that the sum of the three conductor

Yeulis
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- ' . ' L . and correct longitudinal MTL formulations. In regards to the re-
L o L —wose ] alizability of Y, (#), the condition of dominance is sufficient,
: et | R but not necessary; the only constraint on passive realization
o o ‘ (with RLCelements, ideal transformers, and mutual inductance)
L is thatY¢, (z) is positive real [20, Th. 7-2]. Indeed, the function

------- Y7 (2) could be realized everywhere with a common-ground

- L L L 1 1 L L 1 L

20 25 30 3 40 45 50 topology including transformers.
Distance from load (cm)

(@) V. CONCLUSIONS

3 T T T T T T T T

AN N The objective of this paper has been to investigate the
! ] behavior of the longitudinal MTL functions and, in particular,
detail the effects of quasi-TEM mode delays on these func-
tions. This study has showed how the mode delays in lossless
symmetric lines were responsible for longitudinal conductor
. ‘ power variations, varying conductor voltage SWRs, multimode
Distance fromload ) signal distortion, conductor reflection coefficient magnitude
) variations, and unrealizablE-terminal admittance matrices.
Passivity, reciprocity, and lossless properties have been
riga?ﬁ'-_o”gifgdggf;' distribution of the conductor and modal powers (frofyemonstrated numerically for the cases encountered, and
oadios == ' passive circuit realizations have always been possible, though
constrained to certain topologies; thé-terminal topology
. physically inherent to microstrip could have been realized in
i . : , the general case only if ideal transformers had been included.
b WE N ' For the lossy case, such analysis becomes considerably more
| complicated, though the present analysis should be useful for
i many circuits of practical interest modeled using lossless as-
° ~, T sumptions. Moreover, as designers simulate smaller, faster, and
TThE T A T s B e 5 h e w higher frequency transmission devices, particularly coupled
Distance from load (cm) transmission lines, these effects will become more pronounced.
(@) Clearly, lossy high-coupling MTL simulation must account
, for these effects to ensure that large longitudinal reflection
i coefficient magnitude fluctuations, conductor power variations,
H and signal distortion are not attributed solely to power loss or
other mechanisms.
Detailed analysis regarding the effects of mode delays on loss
calculation, as well as experimental validation on low-loss struc-
tures, remains as a topic of future work.

Power (mW)
- N W H O N
T

o
T

Power (mW)

Normalized Re (Y}

O N TR L N h '; ;I' N T

O LR LI N M B

O TR TS L N LI MM

L N ey e e

TR LN R T R
L

Normalized Re {Y}

(b) APPENDIX

Fig. 8. Simulated longitudinal variation (from load to = —100 cm) of S-parameter matrix symmetry in reciprocal systems is shown
R{Y{,(2)} for “short” termination at 2.0 GHz, showing the negative reagiS follows (omitting the matrix multiplication operatdr
components of the element-normalized admittance matrix. . A .
The generalized-parameter matrix given by (14) is repeated

here for convenience as follows:
whereY;.r connects lines 1 and 3 to grourd,.;z » connects e \1/2 rope e . o \—1/2
line 2 to groundy;,..; is the mutual admittance between neares® = (Za) " [Za, + Z21) " [47 — Z4)(Z) - (A1)
neighbors, andy., is the admittance between nonadjaceRfyis matrix describes a reciprocal system: its symmetry is

neighbors (lines 1 an_d 3). _ _ proven as follows. Taking the transpose of (A1) results in
Fig. 8 shows locations for which each of these admittances

have negative real parts, and are unrealizable ivaerminal  S* = (2%,)""/? (25 — 25125, + 257 (Z5)Y7 (A2)
topology. Clearly, the periodicity of the effect is evident. A de- . ) . ] _
tailed evaluation of how the termination choice affects this loftN€re each factor is symmetric by reciprocity. Nowz, is
gitudinal occurrence is a highly nonlinear problem beyond tR@nsingular

scope of this paper. St — (z° V" L/2 ge e \lrge _ ge
For great lengths, we find locations whéfé () is not dom- (Zan) C}(‘:( Ch)c _[1 L ‘;h] CLoe 1)z
inant showra posteriori However, in these instances, none of (Za + 271 20, (Zg) (Za)7 . (AJ)

the diagonal terms d¥';,, (z)];; have negative real parts. As ex~r, simplify the algebra, we let
pected, the admittance matrix was positive real (therefore, pas- ’
sive) for all simulated points, demonstrating numerical stability A = (%%,) ' [%5 — Z5,][Z%, + 23] ' Z5,. (A4)
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Note thatA4 is similar to a reflection coefficient. Now,

The

Using (A5) with (A4) and (A3), we arrive at

Fi

Chin definesS according to (A2).
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derivation forA is obviously applicable to (6).
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St = (17]

ChW?A(zc )2

= (2" (25 + 25) 125 - Z4,)(Z8,) .
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(18]
(19]

nally, we haveS = S*, which agrees with [21], in which [20]
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